

Asymmetric rebound effects across different household income groups

Gioele Figus^{*}, Karen Turner^{*}, and Peter McGregor^{**}

*Centre for Energy Policy University of Strathclyde

**Fraser of Allander Institute University of Strathclyde

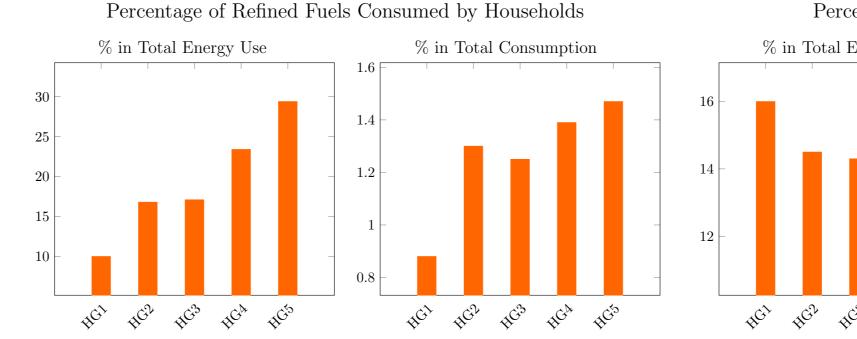
INTRODUCTION

Increasing energy efficiency in households energy consumption can lead to **rebound effects**.

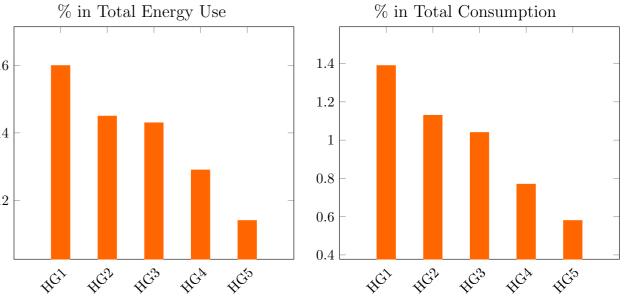
Microeconomic studies have used partial equilibrium economic models to show that low income households are generally associated with higher rebound effects (direct and indirect) (e.g. Chitnis et al. 2014).

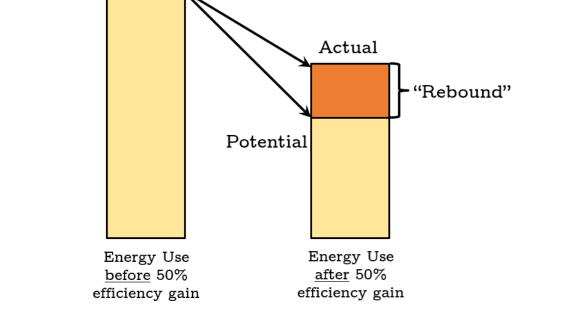
This study uses a Computable General Equilibrium (CGE) model to asses the household general equilibrium re**bound** effect from a 10% increase in energy efficiency in **a**) refined fuels consumption and **b**) gas consumption across five household income groups in Scotland.

2. What is the rebound effect?


The **rebound effect** occurs when the actual energy savings (AES) from an increase in energy efficiency partially offset the potential energy savings (PES) due to responses of different economic agents.

4. DATA


The core dataset of the model is the 2010 Scottish Social actions between 30 Scottish industries, including refined fuels, gas, electriciy and coal, and 5 household income groups. Accounting Matrix, which reports information about trans-


Table 1: Income groups disaggregation in the 2010 Scottish SAM				
HG1	$\mathrm{HG2}$	HG3	$\mathrm{HG4}$	$\mathrm{HG5}$
up to £32.0K	£32.1K - £41.0K	£41.1K - £52.0K	£52.1K - £69.0K	£69.1K and over

Consumption pattern differ across the five groups dependexamples the case of **gas** and **refined fuels** because they ing on the particular good. This study takes as illustrative are consumed with different intensities by each group.

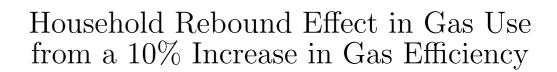
Percentage of Gas Consumed by Households

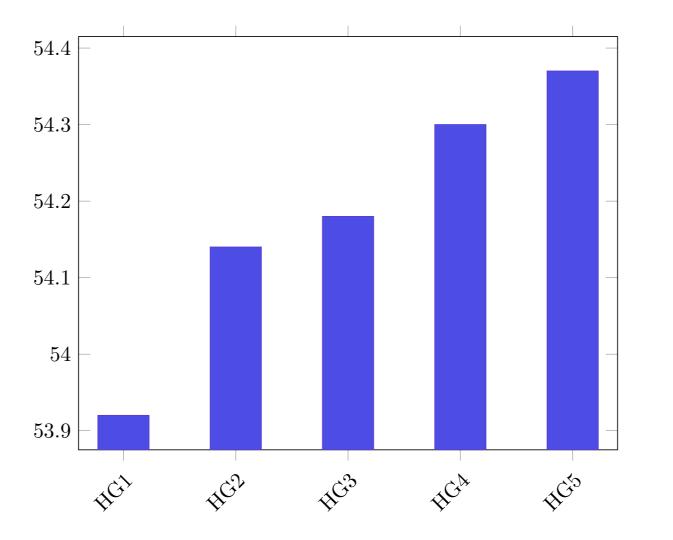
Partial equilibrium assumes fixed market prices and nominal incomes (Lecca et al. 2014).

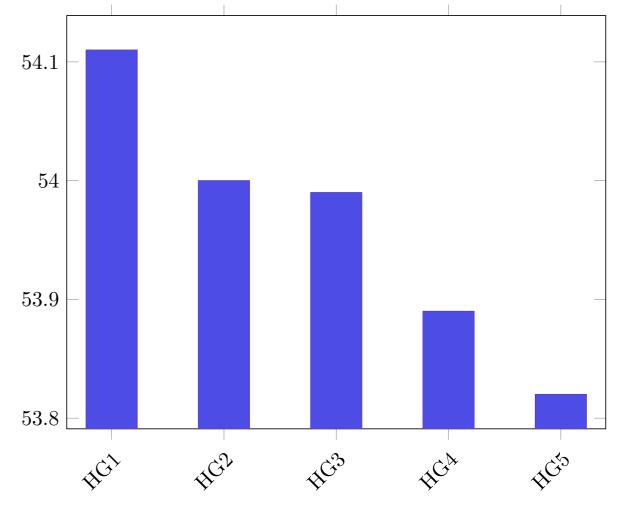
- **Direct rebound** Improving energy efficiency of a certain energy service may encourage households to consume more of that good.
- Indirect Costs savings from more efficient energy services may be spent in other goods and services that require energy at different points in their production and supply chain.

General equilibrium rebound allows for market prices and income variations.

- Household rebound Households further respond to an increase in energy efficiency taking into account prices and income variations as the wider economy adjusts. It can be derived in a specific energy use, e.g. household rebound in gas use.
- Economy-wide rebound The responses to an energy efficiency improvement are considered both in consumption and production as prices adjust towards a new macroeconomic equilibrium.


3. THE CGE MODEL


The general equilibrium rebound effects are derived using the AMOS-ENVI CGE modelling framework for Scotland

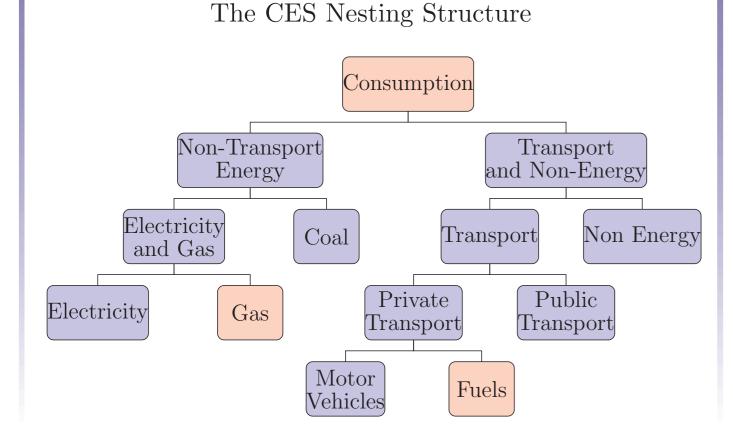

The data show that high income household groups use Low income groups of households use domestic gas more refined fuels more intensively than low income households. intensively than high income groups.

5. RESULTS

Household Rebound Effect in Refined Fuels Use from a 10% Increase in Fuels Efficiency

Households responde to a 10% increase in refined fuels efficiency by using more transport services. Higher income groups are associated with a higher calculated rebound effect, as their higher fuel intensity triggers larger income effects than in lower income households.

The response to a 10% increase in gas efficiency is similar but opposite to the refined fuels case in terms of ranking of household income groups. The higher general equilbrium rebound effect in gas use is associated with lower income households.


6. CONCLUSIONS

Results from simulations confirm that the size of the energy rebound effect varies across different types of energy use and different household income groups even in a generalequilibrium setting.

same good (preliminary results suggest the opposite may be true for other energy uses by the same households).

In this version of the model, consumption decisions are made by 5 representative utility maximising households, identified in 5 income bands.

Each representative household allocates consumption at each time according to a nested constant elasticity of substitution (CES) utility function.

However, in contrast to previous findings in the microeconomic literature, lower income households are not always those who 'rebound' the most.

• Income groups consuming a certain energy good more intensively tend to rebound more in the use of the

7. Next steps

The results are limited to the general equilibrium impact on household energy use only on the good whose efficiency has improved. This work will be extended to:

• Investigate the impacts on consumption of all the other energy and non-energy goods once the efficiency

References

- [1] M. Chitnis, S. Sorrell, A. Druckman Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups In Ecological Economics, 106, 12-32, 2014.
- P. Lecca, K. Swales, P. McGregor, K. Turner The added value |2|from a general equilibrium analysis of increased efficiency in household energy use In Energy Economics, 100, 51-62, 2014.

- A sufficiently disaggregated partial equilibrium study might pick up the same pattern, but it is not able to capture the full income effects.
- Energy should not be treated as a single homogeneous good and one should consider different energy types separately.

of one energy service has improved.

• Consider the impacts on total energy use in the whole economy, production and consumption, and calculate the full economy-wide rebound effect.

CONTACTS

Gioele Figus

email: gioele.figus@strath.ac.uk

https://www.strath.ac.uk/ippi/aboutus/centreforenergypolicy/ Centre for Energy Policy, International Public Policy Institute University of Strathclyde, Glasgow