

Engineering and Physical Sciences Research Council

CENTRE FOR ENERGY POLICY

Beyond direct rebound: too complex a story for a single measure?

Karen Turner

Energy Economics Iberian Conference, EEIC | CIEE, 5 February 2016

EPSRC grant ref. EP/M00760X/1

What is rebound and why are we so concerned about it?

$$R = \left(1 - \frac{AES}{PES}\right) x100$$

- Determined by ratio of actual energy savings to potential energy savings following an energy efficiency improvement
- PES generally stated in terms of potential engineering or technical savings
- Increase efficiency by 10%, require 10% less physical energy input to produce same level of production output or consumption utility

First question: why would we expect to realise full PES?

- Rebound triggered by fact that reduced physical energy requirement reduces price of delivering energy service
 - Translates to considering energy in efficiency units, effective price of energy is the price using energy to deliver a given output (the energy service)

Direct rebound

- But will trigger series of economic responses
- Zero rebound would imply no economic response whatsoever
- So would PES equate to **expected energy savings**?
- We wouldn't expect zero economic response with any other efficiency improvement, e.g. labour efficiency?

Why does rebound matter?

- The rebound process is driven by economic responses
- What is the objective function of energy efficiency initiatives/policy?
- To increase welfare?
- To reduce energy use?
- To reduce associated carbon emissions?

Policy perspective

- Primary aim of energy efficiency policy is to reduce energy use and emissions
- But policymakers tend to operate in context of multiple objectives
- Likely to welcome economic benefits that drive rebound
- But need to know what energy savings will be delivered
- And where in the economy energy use and emissions may rise or fall

IEA (2014), Capturing the Multiple Benefits of Energy Efficiency, OECD/IEA, Paris.

Direct rebound

- Even in context of direct rebound, there is a need to take welfare considerations into account
- Direct rebound studies have tended to focus on demand response to reduced price of a given energy service
- See Chan and Gillingham (2015) introduce consideration of multiple fuels and multiple energy services in context of underlying consumer preferences
- Also Borenstein (2015) but with focus on how substitution between more and less energy intensive goods may produce negative rebound
- May be argued latter going beyond direct rebound
- Problem with rebound taxonomies (Turner 2013)

Substitution and rebound from 're-spending' effects

- Energy embedded in supply chains of different types of goods/services
- Recent growth in use of input-output methods to consider impacts of reallocating spending away from energy use subject to (household) efficiency improvement
- But often a lack of clarity in how rebound is measured

$$R = \left(1 - \frac{AES}{PES}\right) x100$$

 Guerra and Sancho (2010) – a general equilibrium measure of rebound should include reduced requirements on energy use embedded in energy supply chain in PES

Variation in rebound results – Turner and Katris (2016) experiment using WIOD data (Timmer et al., 2015)

Table 1. Changes in energy use and CO2 emissions associated with a 10% reduction(\$5,525.8m) in UK household use of UK EGWS outputs

	Energy use (terajoules)	Related CO2 (kilotonnes)
A. Reduction in direct energy use by UK households	-152,591	-6,172
Reductions in energy use in UK EGWS supply chains:		
Total multiplier effect per \$1m spend:	38.14	1.89
B. Direct - own-sector $(25.9tj/1.26kt \text{ per }\$1m)$	-143,142	-7,777
C. Indirect - own-sector $(8.33tj/0.41kt per \$1m)$	-46,040	-2,501
D. Indirect - other UK $(1.06tj/0.08kt \text{ per }\$1m)$	-5,878	-471
Sub total UK	-195,060	-10,749
E. Indirect - outside of UK $(2.84tj/0.15kt \text{ per }\$1m)$	-15,713	-926
Global total	-210,773	-11,675
Total reduction in UK energy use	-347,651	-16,921
Total reduction in global energy use	-363,364	-17,847

Variation in rebound results – Turner and Katris (2016) experiment

Table 2. Reduction in EGWS spend: indirect rebound calculation [R= 1-(AES/PES)*100]

16,921 17,847
16,921 17,847
17,847
16,921
0%
17,847
0%
6,172
-174%
6,172
-189%

Variation in rebound results – Turner and Katris (2016) experiment

Table 3. Changes in energy use and CO2 emissions associated with reallocation of \$5,525.8spending between UK EGWS and Hotels & Restaurants outputs

	Energy use (terajoules)	Related CO2 (kilotonnes)		
Increases in energy use in UK Hotels and Restaurants supply chain:				
Total multiplier effect per \$1m spend:	2.84	0.14		
F. Direct - own-sector $(0.41tj/0.02kt \ per \ \$1m)$	2,287	101		
G. Indirect - own-sector $(0.001tj/0.000kt \ per \ \$1m)$	6	0		
H. Indirect - other UK $(1.48 tj/0.94kt per \$1m)$	8,199	413		
Sub total UK	10,492	514		
I. Indirect - outside of UK (0.94tj/0.05kt per \$1m)	5,218	279		
Global total	15,711	794		
Net increase/decrease in UK and global energy use:				
Change in direct energy use by UK households (A)	-152,591	-6,172		
EGWS shock - change in direct EGWS energy use (B)	-143,142	-7,777		
All other change UK energy use in UK (C, D, F, G, H)	-41,426	-2,458		
Net at UK level	-337,159	-16,406		
Change in energy use outside of UK (E and I)	-10,495	-646		
Net at global level	-347,654	-17,053		

Variation in rebound results – Turner and Katris (2016) experiment

Table 4. Reallocation of UK EGWS spend to UK Hotels and Restaurants: indirect rebound calculation [R=1-(AES/PES)*100]

	Energy use	CO2
Actual energy savings (AES):		
UK le	vel 337,159	16,406
Global le	vel 347,654	17,053
Indirect rebound:		
1. Guerra and Sancho (2010) - all included in PES		
UK lev	vel: 3%	3%
Global lev	vel: 4%	4%
3. Turner (2013) - only household direct saving included in PES		
UK lev	vel: -121%	-166%
Global lev	vel: -128%	-176%

Information for policy analysts?

- Issue discrepancy in rebound results for the same changes in energy use and both worked out for a case where we have *net energy savings*
- Issue rebound regarded as a 'negative', a 'bad' thing for energy efficiency policy
- Can we present the information in a more useful way?
- Consulted group of policy analysts outcome, focus on use of **multipliers**
- Energy or carbon **saving** multiplier: (direct + indirect effects/direct effects)
- A 'positive' (net energy savings) eroded by a 'negative' (positive rebound in respend)

Information for policy analysts?

- Multiplier focuses on physical savings across all areas/sectors of the economy per unit of direct saving in household energy use
- Equates to AES/PES component of rebound if PES is household savings only (here no direct rebound)
- For case above
- Reduction in energy spend alone
 - At UK level CSM = 16,921/6,172 = 2.74
- Reallocation to 'hotels and restaurants' ('eat out')
 - At UK level CSM = 16,406/6,172 = 2.66

EPSRC project policy brief

energy spend to 'eat out'

Reallocate from reduced energy spend to 'eat in'

More general problem with single rebound measure

- Aside from lack of clarity on how rebound is calculated, comparability across different studies
 - Both in terms of what is measured, how and case specific determinants
- Particularly in case of full economy-wide rebound
 - (Economy-wide rebound how all energy use in the economy is impacted by a change in energy use in one specific sector, one specific type of energy use)
- Determined by a range of economy-specific factors
 - Also question of how we define 'the economy'
- And range of mechanisms that may cause positive or negative rebound effects van den Bergh (2011) identifies 14 mechanisms
 - Including international trade effects: Koesler et al. (2016) find global rebound < national rebound due to changes in comparative advantage
- What is captured by model being used?

Example: 'disinvestment' in energy supply

- One potential energy supply response is 'negative multiplier' effect captured in fixed price input-output model
- We identify a second a 'disinvestment' effect (Turner, 2009)
- If energy supply revenues fall with demand
- Decreased return to capital
- May mothball or reduce capacity
- Tightening energy supply conditions will put upward pressure on output price
 - Local 'energy' prices matter we don't consume crude oil where there is local capacity and constraints on capacity
- Dampening economy-wide rebound over time

Example: 'disinvestment' in energy supply

- Disinvestment a necessary but not sufficient condition to cause economy-wide rebound to be bigger in the short-run than in long-run
- Contradicts Wei (2007) and Saunders (2008) predictions that economy-wide rebound will always be bigger in the long-run (as capacity constraints relax)
- Crucial: models of Wei and Saunders assume return to capital is fixed and exogenously determined
- Just one element of model specification

Modelling economy-wide rebound using CGE techniques

- Multi-sector economy wide computable general equilibrium models the most commonly adopted method for considering economy-wide rebound
 - Ex ante ex post (historical) analyses often conducted using econometric methods
- Key benefit of CGE focus on causal process, importance of interactions between sectors and markets
- Assess in context of economic impacts
- Brings us back to 'multiple benefits' issue that concerns policy

Decoupling rebound and economic expansion?

- Economy-wide rebound driven by same processes as economic expansion
- Does this make rebound a necessary 'evil'?
- Can we reduce rebound without sacrificing macroeconomic benefits of increased energy efficiency?
- Focus of energy efficiency often simply on the most energy intensive activities
- What if we increase energy efficiency in something that is a competitor for a relatively energy-intensive activity?

Public vs. private transport?

- UK CGE model increase energy efficiency in 'Road and Rail Transport' (UK IO sector – freight and public transport)
- Macro level benefits
- At sectoral level, increased competitiveness public transport relative to private transport in household consumption choice
- Impact on transport activity and economy-wide rebound depends on one key parameter
- Elasticity of substitution between public and private transport in household consumption decision

Table 1. Macroeconomic and key energy use impacts (%) of a 10% increase in energy
efficiency in the 'Road and Rail ' industry (central case scenario)

	Short run	Long run	
		No migration	Flow migration
GDP	0.004	0.011	0.038
Consumer Price Index	0.005	-0.007	-0.021
Unemployment Rate	-0.102	-0.146	0.000
Total Employment	0.007	0.009	0.036
Nominal Gross Wage	0.015	0.008	-0.021
Real Gross Wage	0.010	0.015	0.000
Labour supply	0.000	0.000	0.036
Replacment cost of capital	0.002	-0.009	-0.022
Investment	0.033	0.014	0.041
Capital Stock	0.000	0.014	0.041
Households Consumption	0.014	0.014	0.025
Household Income	0.013	0.015	0.025
Share of household income spent on energy	0.002	-0.007	-0.008
Gov deficit	-0.067	-0.085	-0.199
Export REU	-0.012	0.006	0.030
Export ROW	-0.014	0.006	0.032

Public vs. private transport?

- When set very low, due to increased income, households increase use of both public and private transport
- Result for no migration case shown opposite
- As increase, demand for cars and refined fuels falls from outset

Key result from current EPSRC project – we can decouple!

A multi-disciplinary, multi-dimensional policy challenge

- Pathway to the low carbon economy: changing the *composition of activity* with directed energy (and other) efficiency improvements acting as driver/enabler
- TECHNOLOGY (DEVELOPMENT AND AVAILABILITY) making public transport more energy efficient and widely available
- BUSINESS/MARKETS ensuring efficiency improvements translate through prices to increased competitiveness
- USER BEHAVIOUR getting people to respond to changes in relative prices
- *Our* next challenge: will same lessons apply to other cases, e.g. electrification of heat and transport?

Pending issues?

Fundamental issue - ensuring rebound research is policy relevant research

- Less focus on how a single rebound 'indicator' should be measured and more on reporting what policymakers need to know *and pay attention to* in considering impacts of rebound mechanisms
- 2. Need to drawing on insights from and work across multiple disciplines
 - Not just a problem for economists
 - Though lack of attention particularly to macroeconomic/fiscal implications of different technological solutions is problematic in terms of gaining policy traction (optimisation not sufficient!)

Pending issues?

My thoughts on priorities for research

1. Energy supply

- Continuing lack of attention to energy supply responses
- Including implications of imperfect competition, price-setting behaviour

2. Role of capital/durable goods

- 'Exogenous and costless' assumption
- Focus of debate on costs of investment and how impacts (or not) rebound
- Key question what if energy efficiency improvement is embedded in a capital or durable good?
- Relevant to our public vs. private transport study....and more generally

References cited in slides

- Borenstein, S. (2015). A microeconomic framework for evaluating energy efficiency rebound and some implications, *The Energy Journal* 36(1), 1-21.
- Chan, N.W. and K. Gillingham (2015). The microeconomic theory of the rebound effect and its welfare implications, *Journal of the Association of Environmental and Resource Economists* 2(1),133-159.
- Guerra, A. I. and F. Sancho (2010). Rethinking economy-wide rebound measure: an unbiased proposal, Energy Policy 38, 6684-6694.
- Koesler, S., J.K. Swales and K. Turner (2016) International spillover and rebound effects from increased energy efficiency in Germany, Energy Economics in press at http://www.sciencedirect.com/science/article/pii/S0140988315003631
- Saunders, H.D. (2008). Fuel conserving (and using) production functions, Energy Economics 30, 2183-2235.
- Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R. and de Vries, G. J. (2015). An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production, Review of International Economics, 23, 575–605.
- Turner, K. (2009). Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK Economy, Energy Economics 31, 648-666.
- Turner, K. (2013). Rebound effects from increased energy efficiency: a time to pause and re-flect?, The Energy Journal 34(4), 25-42.
- Turner and Katris (2016). Indirect rebound involving embodied energy use in re-spending decisions: how do we treat negative multiplier effects in energy supply chains?, working paper version available under Centre for Energy Policy list at https://www.strath.ac.uk/media/cross-functional/sippi/Negative_multiplier_effects_-_Turner-Katris_FINAL_Dec_2015.pdf
- van den Bergh J.C.J.M. (2011). Energy conservation more effective with rebound policy, Envi-ronmental and Resource Economics 48, 43-58.
- Wei, T. (2007). "Impact of energy efficiency gains on output and energy use with Cobb-Douglas production function." Energy Policy 35: 2023-2030.

Engineering and Physical Sciences Research Council

CENTRE FOR ENERGY POLICY

Thank you for listening

Questions?

karen.turner@strath.ac.uk

EPSRC project web-site: <u>http://cied.ac.uk/research/impacts/energysavinginnovations</u>

Personal web-site (papers): <u>http://www.strath.ac.uk/staff/turnerkarenprof/</u>