

Thoughts on using national or international CGE approaches

Kim Swales

CENTRE FOR ENERGY POLICY

Centre on Innovation and Energy Demand

Multi-sectoral models

- Computable General Equilibrium (CGE) models are members of a family of modelling approaches which includes:
 - Input-Output (IO)models
 - TIMES (Linear programming models)
- 10
 - Demand driven model
 - Fixed coefficients in production and consumption
 - No supply-side constraints
- TIMES
 - Linear programming (cost minimising) model
 - Choices between linear discrete techniques
 - Long-term perspective
- In all the energy-environment versions of these models typically no feedback from environment.
- They are complements, rather than competitors

Broad structure of CGE models

- CGE models attempt to capture the way in which a decentralised system operates to organise production and consumption
 - Incentives
 - Co-ordination
- Role of the profit, utility maximisation and market mechanism
- Allocation of scarce resources, but not necessarily strict neoclassical approach
- Incorporate state taxes, subsidies and regulation
 - To supply/control public goods and public bads (emissions)

CGE model as a numerical aid to conceptual thought

- All models abstract/simplify
- CGE models take a complex system whose individual elements are well understood but whose interaction, following a disturbance, may be difficult to predict
 - Sign
 - Competing forces
 - Magnitude
- Strength
 - Theoretical rigour
 - Flexibility
 - Calibrated on actual data (IO accounts)
 - Ability to surprise
 - Backfire

Is big always beautiful? (1)

- In early days our CGE modelling restricted
 - computing power
 - programming skills/packages
 - 3 sectors, single period, 5 minutes to solve
 - data
 - IO data limited and incompatible
- Much extended computing and data processing power
- Scotland and International data more frequent and timely

Is big always beautiful? (2)

- A 1 to 1 map is not useful
 - "To think is to ignore (or forget) differences, to generalise, to abstract" ("Funes and his memory, Borges).
- Need to suppress information for focus
 - Physically/conceptually dealing with results
 - 20 sectors, 20 periods
 - 5 pollutants per sector
 - 5 economic variables per sector
 - Do the math: each simulation gives 20x20x10=4,000 results
- Large number of parameter values
- Difficult to maintain large model

Regional, National or Global?

- We began with a Scottish stand-alone model:
 - Model economic activity, wages, prices, employment, unemployment and sectoral output in small open region
 - explicitly (endogenously) model trade (RUK, ROW) and migration (RUK)
 - implicitly model capital flows
 - However, no inter-action across regions/nations
- Regional Government with:
 - supply-side policies
 - targets
 - limited fiscal powers

Scotland/RUK Model

- Economic activity, modelled simultaneously in both regions
 - Impacts inter-regional trade and migration
 - ROW still "passive"
- National macro-economic closures/constraints
 - national/regional fiscal policy
 - balance of payments/exchange rate

Strengths and weaknesses of multi-regional approach

• Strength

- Feedback
- Modelling the regional effect of a national policy
 - 50% of negative impact on Scotland of the UK leaving EU comes from the RUK
 - Simultaneous operation of policy
- Modelling the national effects of region-specific policy
- Identifying possible spatial policy co-ordination and conflict
- Weaknesses
 - Data
 - Compatibility
 - Timeliness
- Question
 - Is the geographic disaggregation appropriate?

Global economic models

- Limited knowledge of global models
 - GEM-E3
 - ZEW
 - Reviewing RHOMOLO
- The issues similar to those raised as move from regional to multiregional/national, writ large.
- Specific Issues
 - Increased focus specific resource constraints/supply-side issues
 - More focus on distribution of costs
 - Complex issue of appropriate spatial disaggregation

Global energy-environment-economy model

- Global problem/national targets
 - Do global models help?
- Consumption accounting/ Environmental footprints
 - But policy usually expressed in production /territorial accounting
- Pollution leakage
 - Potentially problematic, especially where costs imposed on emissions
 - Examples with tax and energy efficiency policy

Regional/national/global

- Ideally:
 - suite of compatible models
 - different levels of sectoral and geographic disaggregation.
- Model adopted would be the one that best matched the problem
- National models would inform the global models: global models would augment and validate national models.

Takeaway

- Primary aim of CGE modelling is comprehension not "blackbox"
 - tension with politicians with policy makers caught in the middle
- Key environmental issues are global and involve demandcomposition and supply-side issues: need global CGE models
- Ideally want suite of compatible multi-sectoral models
- Although we have made incredible modelling progress over last 25 years, ultimately you always face trade-offs.

