Gaël Giraud

Introduction

Thermo and Macro

Some thoughts on EROI and macroeconomics

Gaël Giraud

AFD with Hadrien Latremange, University Paris-1, Chair Energy and Prosperity WORK IN PROGRESS

July 2, 2017

Intro

Some thoughts on EROI and macroeconomics

Gaël Giraud

Introduction

- Most macro-economic models violate the first 2 laws of thermodynamics.
- Complain of physicists from IPCC group 1.
- Tentatives to include energy in the "production function" (Stiglitz, 1974)
- Cost share theorem
- Georgescu Roegen (1971): when dissipating energy, human societies produce entropy which affects their environment.

Giraud and Kahraman (2016)

Intro

Some thoughts on EROI and macroeconomics

Gaël Giraud

Introduction

Thermo and Macro

- Ludwig Boltzmann (1905): the struggle for life is a struggle for energy dissipation (entropy production)
- Alfred Lotka (1922): natural selection tends to favor those organisms that dissipate most energy (produce most entropy).
- Ilya Prigogine (1961): In the presence of a permanent flow of energy, dissipative structures self-organize to dissipate energy.
- A set of dissipative structures is also a dissipative structure:

Examples: a cyclone, a living being, a human society.

Gaël Giraud

Introduction

- This paper: a thermodynamical setting with natural resources...
- where a macro-economic model can be embedded.

Gaël Giraud

Introduction

- Carnot's law (1824): Mechanical work can be sustainably produced only through cycles of transformations extracting heat from a hot source while releasing some to a cold source. Maximal efficiency obtains when all transformations are reversible.
- Applications to fluids:

Gaël Giraud

Introduction

- A convective cell behaves like a heat engine
- It follows cycles producing mechanical work: $W = Q_1 Q_2$
- The hot source (*T*₁) gives energy *Q*₁. The cold source (*T*₂) receives energy *Q*₂.
- When $T_1 = T_2$, no mechanical work.
- In this paper, replace the convective cell by an economic metabolism... and mechanical work by useful work.

Thermo and Macro

Some thoughts on EROI and macroeconomics

Gaël Giraud

Introduction

Thermo and Macro • Marion K. Hubbert.

• Bardi and Lavacchi (2009)

$$\dot{R} := k_1 K_R R \tag{1}$$

$$\dot{K}_R := k_2 K_R R - \delta K_R \tag{2}$$

R := non-renewable resource (fossil energy, minerals) $K_R :=$ extractive capital.

Gaël Giraud

Introduction

- $E = -\dot{R}$ Exergy (or Energy in another interpretation).
- $Y = \frac{E}{\tau} = u \frac{K}{\nu} = aL$ (First law) $u \in (0, 1)$: endogenous usage rate of capital.
- $E \Rightarrow Y \Rightarrow u$ and L.
 - **1** $1/\tau \in (0,1)$: energy efficiency.
 - Carnot limit for internal combustion engine: $\frac{1}{\tau} \simeq 0.37$ (Second law)
 - **③** Current car engines: $\frac{1}{\tau} \simeq 0.2$
 - (Coal conversion to electricity: $\frac{1}{ au} \simeq 0.4$

Gaël Giraud

Introduction

Adding a toy macro-model

Some thoughts on EROI and macroeconomics

Gaël Giraud

Introduction

Thermo and Macro • $u = \frac{E\nu}{\tau K} = \frac{k_1 K_R R \nu}{\tau K}$

• Goodwin-Keen (1995) : $\dot{K} = I - \delta K = \kappa(\pi)Y - \delta K$. $\pi := \frac{\Pi}{Y}$ profit share. $\kappa(\cdot)$ investment function.

• $g = \frac{\dot{Y}}{Y}$ At a steady state :

$$g^* = k_2 R^* + \frac{\kappa(\pi^*)u^*}{\nu} - 2\delta.$$

Of course, if resource non-renewable, $g^* = 0!$

Gaël Giraud

Introduction

Thermo and Macro Alternative extraction equation:

$$\dot{R} = -E + \sigma R +
ho(1-rac{1}{ au})E$$

 $\rho \in (0, 1) :=$ rate of recycling. σ : rate of new discoveries or rate of regeneration. Giraud, Rostom, Vidal (2016).

Back to thermo

Some thoughts on EROI and macroeconomics

Gaël Giraud

Introduction

Thermo and Macro • Economy = Aggregate metabolism that extracts ressource *R*, and rejects wastes, *W*.

- Ecosystem = Reservoir where R and W coexist. $\overline{\mu}_R :=$ potential (chemical, exergetic...) of R in the ecosystem.
 - $\overline{\mu}_W :=$ potential of W in the ecosystem. $\overline{\mu}_R > \overline{\mu}_W$ (non-equilibrium, Mallick (2014)). Virgo (2011).
- $M = 1 \frac{1}{\tau}E$ (or $(1 \rho)(1 \frac{1}{\tau}E)$) = rate of conversion of R into W in the metabolism.
- \dot{N}_R (resp. \dot{N}_W) = rate of flow of R (resp. W) across the "membrane" between the economic metabolism and the ecosystem.

Gaël Giraud

Introduction

Thermo and Macro • When econ and thermo meet:

$$\dot{N}_R = E - M = \frac{E}{\tau} = Y$$
 (3)

$$= \frac{D_R(\overline{\mu}_R - \mu_R)}{T} - M$$
 (4)

 $\mu_R :=$ potential of the resource within the economic metabolism

T := temperature (e.g., T = 287 K, Svirezhev (2000)) D_R : diffusion parameter

• In an ideal solution, chemical potential:

 $\mu_X = \mu_{X_0} + RT \ln N_X$ R = 8.31 JK⁻¹mol⁻¹ gas constant. N_X: molar concentration.

Gaël Giraud

Introduction

Thermo and Macro • Any potential that is an increasing function of concentration.

T constant in the ecosystem (not in the economic metabolism).

• $\dot{N_W} = \frac{D_W(\overline{\mu}_W - \mu_W)}{T} + M = M$ $D_W < 0$ and $\mu_W = \overline{\mu}_W$: all wastes considered are of anthropic origin.

Pollution = exergy left in our wastes (Ayres).

•
$$\mu_R = \overline{\mu}_R - \frac{TE}{D_R}$$
.

Gaël Giraud

Introduction

Thermo and Macro • Total entropy produced by the economic metabolism per unit of *R* converted into *W*:

$$d\Sigma = \frac{\mu_R - \mu_W}{T} \tag{5}$$

$$= \frac{\overline{\mu}_R - \overline{\mu}_W}{T} - \frac{E}{D_R} \tag{6}$$

$$= \frac{\overline{\mu}_R - \overline{\mu}_W}{T} - kM \tag{7}$$

$$k := \frac{\tau}{(\tau-1)D_R}.$$

•
$$M^{\max} = \frac{\overline{\mu_R} - \overline{\mu_W}}{kT}$$

 $d\Sigma = 0$. No useful work.
Converting *R* to *W* faster than M^{\max} would require work
to be done rather than being a source of work.
(generalization of EROI). Odum and Pinkerton (1955).

Gaël Giraud

Introduction

Thermo and Macro • Total entropy produced by the economic metabolism:

$$dS := Md\Sigma = rac{\overline{\mu}_R - \overline{\mu}_W}{T}M - kM^2.$$

"Red Queen" effect. (Lewis Caroll, Leigh van Valen (1973)).

