Energy and Economic Growth: Learning from past transitions

Prof. Tim Foxon Professor of Sustainability Transitions SPRU – Science Policy Research Unit University of Sussex, UK

EROI Workshop, BEIS London, 30 June 2017

> UNIVERSITY OF SUSSEX

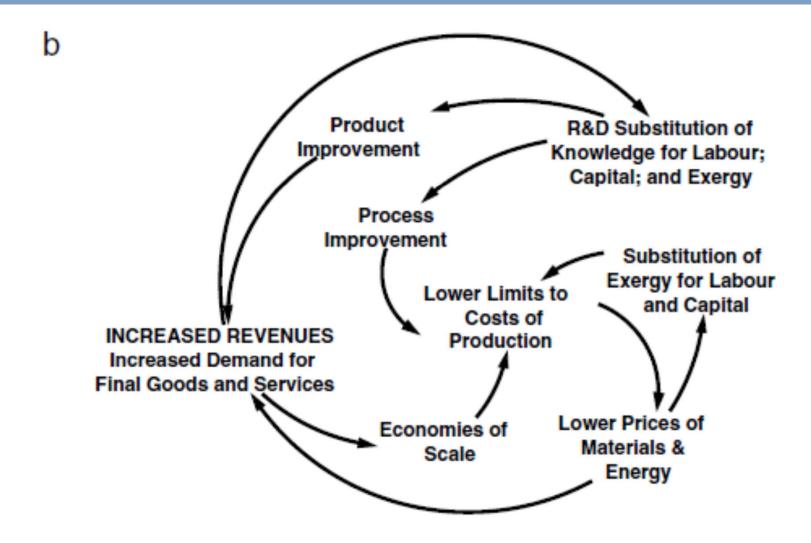
science policy research unit Outline


- 1. Challenges for UK energy policy and industrial strategy:
 - Meeting legally-binding carbon reduction targets
 - Maintaining security of supply
 - Ensuring affordability of energy services for households and businesses
 - Securing industrial opportunities for UK economy of energy innovation
- 2. Energy dependence of economic growth:
 - Dependence of economic growth on efficient conversion of energy sources to provide useful work
 - Role of energy technologies in past surges of economic growth
 - Importance of net energy (EROI) to economic growth
- 3. Insights from past great surges:
 - First Industrial Revolution
 - Post-1945 surge and consumer boom
- 4. Implications for policy-relevant analysis

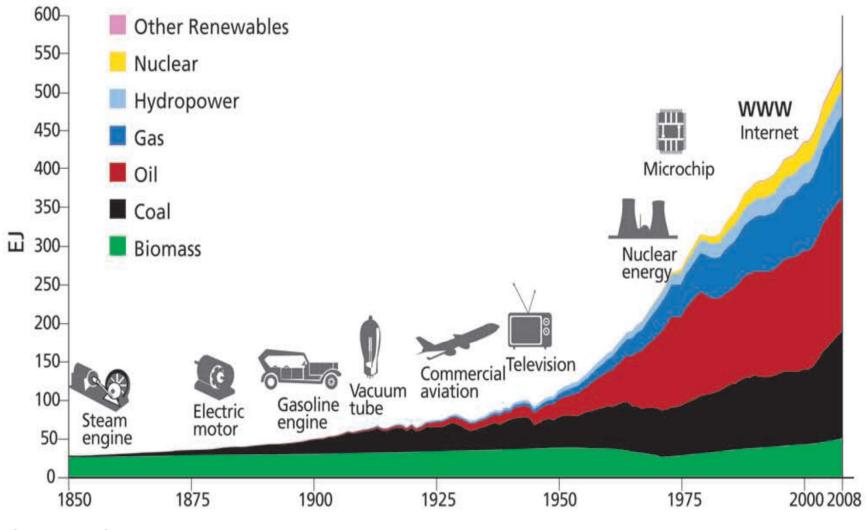
(Draws on Foxon (forthcoming), Energy and Economic Growth, Routledge)

Challenges for UK energy policy and industrial strategy

- Climate change mitigation goals under Climate Change Act:
 - 57% reduction (on 1990 levels) by 2028-32; 80% reduction by 2050
- Security of supply:
 - Declining oil and gas from North Sea
 - Increasing electrification rapid expansion of renewables; new nuclear power but takes 10 years to build; CCS demonstration funding cut
 - Needs smart grid for local generation and demand response
- Affordability
 - 57% increase in household energy bills 2007-14; gas bills now coming down
- Industrial goals
 - Can large investments in energy innovation and infrastructure deliver significant jobs and economic benefits to UK economy?
 - What is right balance of private investment and public support?


Economy as an exergy processing system

Exergy embodied in capital stock = (investment minus depreciation) exergy minus (conversion waste + mfg waste) Investment exergy = total exergy input-total waste = efficiency times input Efficiency = investment divided by input


Source: Ayres and Warr (2012), in *Ecological Economics*

Substitution of exergy as an engine of growth

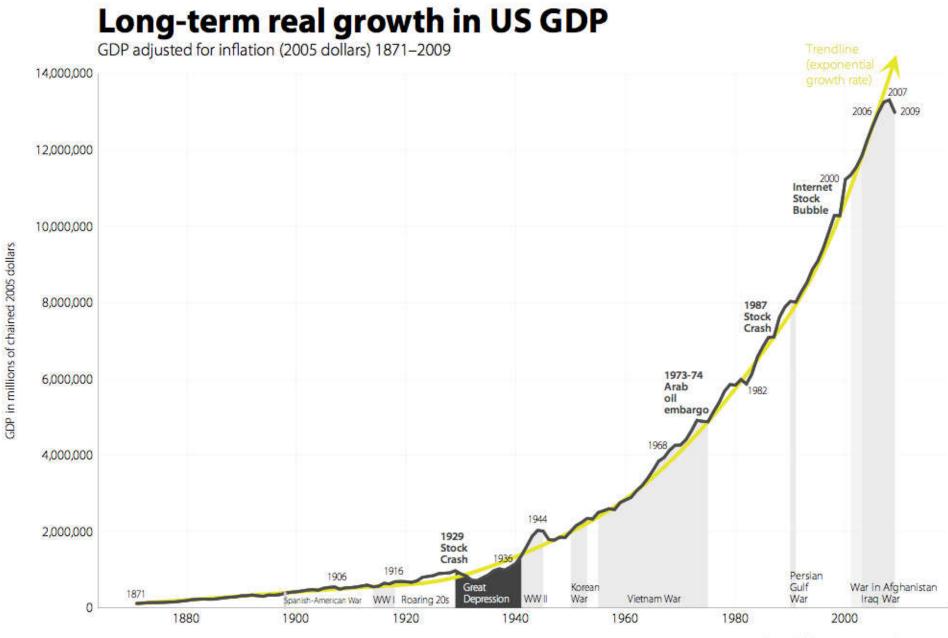
Source: Ayres and Warr (2012), in *Ecological Economics*

World Primary Energy Use, 1850-2008

Source: Global Energy Assessment (2012)

SCIENCE POLICY RESEARCH UNIT Five great techno-economic surges

No., date, revolution, core country		INSTALLATION PERIOD	turning Point		DEPLOYMENT PERIOD	
		'Gilded Age' Bubbles	Recessions		'Golden Ages' Maturity/decline	
1 st	1771 The Industrial Revolution Britain	Canal mania UK	1793–9	7	Great British leap	
2 nd	1829 Age of Steam and Railways Britain	Railway mania UK	1848–5	0	The Victorian Boom	
3 rd	1875 Age of Steel and heavy Engineering Britain / USA Germany	London funded global market infrastructure build-up (Argentina, Australia, USA)	1890-95		Belle Époque (Europe)(*) 'Progressive Era' (USA)	
4 th	1908 Age of Oil, Autos and Mass Production / USA	The roaring twenties USA Autos, housing, radio, aviation, electricity	Europe 1929–33 USA 1929–43		Post-war Golden age	
5 th	1971 The ICT Revolution USA	Internet mania, Telecoms 1990s emerging markets Global financial casino&housing 2000s		2008- 20??	Global sustainable 'golden age'?	
			We	are h	(*) Note an ere between	overlap of more than a decade Deployment 3 and Installation 4


Source: Perez (2016), in Jacobs and Mazzucato

1st and 2nd surges (Industrial revolution)

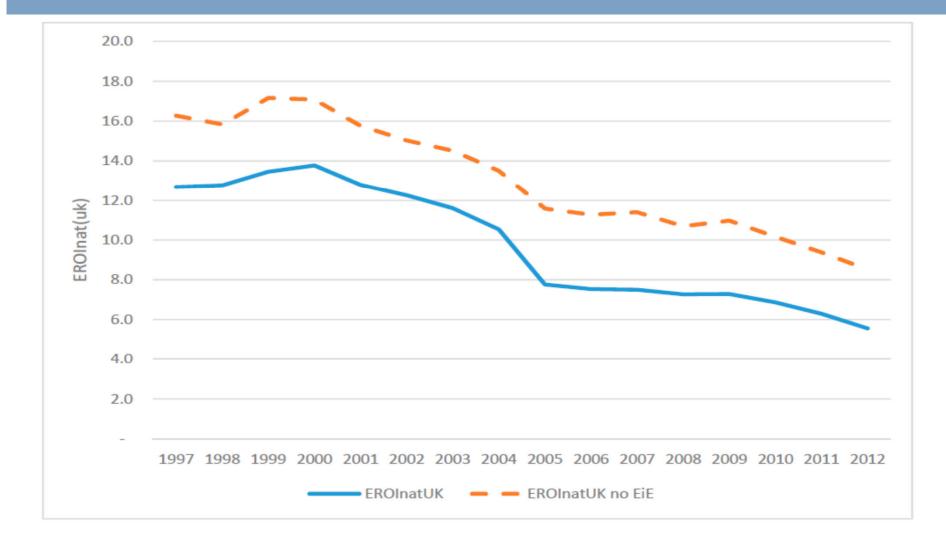
- Role of steam power
 - Newcomen engine (1712) pumping water out of mines
 - Watt engine (1765) separate condenser, increased efficiency, 25 year patent
 - Rotary engine (1789) application to cotton mills
 - Steam-powered locomotive (1829) for Liverpool-Manchester railway
- 'Railway mania' (1830s, 1840s)
 - Speculative investment in new railway lines (10,000 miles of track by 1860)
- Second surge
 - Rapid economic growth in 1850s and 1860s, due to: synergies between use of stationary steam power in factories, motive steam power for railways and development of machine tools
 - Complementary institutional innovations, e.g. factory working systems, joint stock companies

4th surge (rise of consumerism)

- 4th Surge
 - Associated with oil, automobiles and mass production
 - Began with opening of Ford Model T plant in 1908
 - Deployment began after 1945 as war production in US reoriented to domestic mass production
 - Suburbanisation as 'direction' for deployment, enabled by government policies to promote road- and house-building
- Rise of consumerism
 - Plentiful supplies of oil at price of around \$2/barrel (nominal)
 - Plentiful supplies of coal for electricity generation
 - Economies of scale in supply and creation of demand in housing, leisure and electrical devices in the home
 - Significant increase in standard of living for most households

Data from MeasuringWorth.com

VisualizingEconomics.com


5th surge (deployment of ICT)

- Deployment of ICT-based surge after prolonged turning point:
 - 'dot-com' bubble in early 2000s, global financial crisis since 2008
 - Needs investment in productive capital and institutional changes to realise benefits of ICT roll-out
 - Role for government policies to provide 'direction' for roll-out
 - 'Green' can provide direction, including renewable energy technologies, circular economy, smart cities (Mazzucato and Perez, 2014)
- Challenges from techno-economic perspective
 - Dominance of neoliberal market thinking
 - Financialisation of economies
 - Weak legitimacy for government intervention

SCIENCE POLICY RESEARCH UNIT Declining net energy

- Net energy provided measured by EROI (energy return on energy invested)
 - Measures effects of technological innovation (that can improve net energy return) and resource depletion (that reduces net energy)
- Declining EROI for main energy sources
 - EROI for oil from around 80:1 in 1930s to around 20:1 now
 - Renewables also currently have low EROI values, but estimates vary and potential for EROI to increase with technological innovation
- Implications for economic growth
 - Charles Hall and colleagues argue that a minimum EROI of 5:1 is needed to maintain sustainable societies
 - They argue that high net energy enables discretionary spending in economy by households and businesses that drives economic growth

SCIENCE POLICY RESEARCH UNIT National EROI for UK (initial calculation)

Source: Brand-Correa et al. (2017), Energies 10, 534

science policy research unit New economic models

- Green growth
 - Investment in green technologies and infrastructure (linked to ICT) can deliver a new surge of economic growth and jobs
 - High level of economic growth in industrialised countries is necessary to generate investment under current economic and political system
- Post growth
 - Current growth model based on increasing energy inputs and environmental impacts
 - Level of decoupling envisaged in green growth scenarios is unfeasible
 - Climate change scenarios rely on unproven 'net negative emissions'
 - Need to design economic systems to deliver wellbeing rather then growth, either through deliberate downscaling ('degrowth') or at least doing away with GDP as predominant indicator ('agrowth')

Challenges for policy-relevant analysis

- No theoretical model fully accounts for the roles of exergy efficiency, techno-economic surges and EROI in economic growth
 - What can we learn from current (partial) models?
- Mainstream models of endogenous economic growth do not account for energy inputs, but emphasise roles of human capital, skills and knowledge development in economic growth
 - How can these endogenous growth models be related to energydependent models of economic growth?
- Energy-dependent models use energy-augmented production functions
 - Can production function models incorporate dynamic interactions and evolutionary changes?
- Climate change mitigation requires urgent action
 - Need to incorporate energy dependency of economy in low carbon scenarios and analysis of industrial benefits to UK