Energy and Economic Growth: Many Questions, Some Answers

BEIS, June 30, 2017

Author

Michael Kumhof, Bank of England

Disclaimer

The views expressed herein are those of the author and should not be attributed to the Bank of England.

1 Introduction

Two sets of questions that we really need to understand concerning energy:

- 1. What is the outlook for **energy availability**?
- 2. What are the implications of energy availability for **GDP**?

1.1 The Outlook for Energy Availability

- Question 1: What is the outlook for gross energy production?
 - There are two camps: Optimists and "peakists".
 - Important question, but separate from today's topic.
- Question 2: What is the outlook for net energy availability (EROEI)?
 - Drop in global EROEI from 20 to 10 over 10 years:
 - * Equivalent to a \approx 5% gross production loss (see Question 1).
 - * Equivalent to a \approx 0.5% p.a. lower production growth.
 - It gets much worse as EROEI declines to the renewables range < 10.
 - With low price elasticities of demand, this would be serious: Next page.

1.2 The Implications of Energy Availability for GDP

- Question 1: How would gross energy scarcity affect well-being and GDP?
 - Very high energy prices?
 - Very high demand destruction (GDP)?
- Question 2: How would net energy scarcity affect well-being and GDP?
 - Same as for gross energy scarcity?
 - Plus: More work for less consumption?
- Empirical Answers: Inconclusive (Pablo-Romero & Sanchez-Braza (2015)).
- Theoretical Answers: Depends on key aspects of the production function:
 - 1. What is the substitution elasticity between energy and other factors?
 - 2. What is the output contribution of energy?
 - 3. What is the connection between energy and technology?
- Theoretical specifications critically affect empirical investigations!

2 The Substitution Elasticity of Energy

2.1 Mainstream Economics

- Low elasticity in short run, much higher elasticity in long run.
- Reason: **High prices** stimulate substitution.

2.2 Alternative: Entropy

- Low elasticity in short run, even lower elasticity in the very long run.
- Reason: Low quantities eventually make further substitution impossible.
- Story: After extreme cuts in energy use, entropy starts to degrade capital.
- Implication: From then on, energy and labour/capital in fixed proportions.
- The lower the elasticity, the less the output share of energy matters.

3 The Output Contribution of Energy

3.1 Mainstream Economics

- Finds low output contribution, equal to the cost share (5%-10%).
- This means there is not too much to worry about from energy scarcity.
- The typical production function (if it features energy at all):

$$y_t = (Labour_t)^{\alpha} (Capital_t)^{\beta} (Energy_t)^{1-\alpha-\beta}$$

- Problem:
 - Implies labour and capital can function without energy.
 - Very high energy prices make you use capital instead.
 - This is grossly inconsistent with physics.
 - This is the production function of the shopkeeper.
 - It is not the production function of the engineer or physicist.

3.2 Non-Mainstream Literature

- Biophysical economics.
- Attempts to come up with production functions of the engineer/physicist.
- Finds much higher output contribution, sometimes up to 50%.
- But the production function specifications are open to critique.
- Today I will discuss two alternative specifications:
 - Kumhof and Muir (2014): Technology Externality.
 - Domingos, Keen and Kumhof (ongoing): L and K harness energy.

3.3 Alternative 1: Technology Externality

- Energy is a critical enabler of key technologies (Bob Ayres).
- In other words, technology is only possible because of energy.
- Energy's benefits are partly external and not reflected in cost shares.
- The proposed production function $(E_t = \text{energy})$: $y_t = \left((1 - \eta)^{\frac{1}{\epsilon}} \left((L_t)^{\alpha} (K_t)^{1-\alpha} \right)^{\frac{\epsilon-1}{\epsilon}} + (\eta)^{\frac{1}{\epsilon}} \left(\left(\frac{E_t^{technology}}{E_{baseline}} \right)^{\xi} E_t \right)^{\frac{\epsilon-1}{\epsilon}} \right)^{\frac{\epsilon}{\epsilon-1}}$ $- E_t \text{ is priced like a regular factor, and accounts for low cost share.}$ $- E_t^{technology} \text{ is not priced, and accounts for high output contribution:}$ * If this is important: Low gross energy production = big problem. * If this is important: Low EROEI = big problem.

3.4 Alternative 2: L and K Are Means to Harness Energy

- GDP is useful work.
- Capital and labour harness energy to produce useful work.
- Labour can only harness a close to constant amount of energy κ .
- But capital can in principle harness unbounded amounts of energy.
- Capital per se does not matter, only harnessed energy matters.
- The proposed production function:

$$y_t = (Labour_t * \kappa)^{\alpha} (Energy_t * x_t * e_t)^{1-\alpha}$$

- $x_t < 1 =$ exergy to energy ratio (available energy). - $e_t < 1 =$ efficiency of use of energy.

3.5 Implications of Alternative 2 for Many Areas of Economics

- Natural sciences:
 - This does bring physics/entropy/ecology into production theory.
 - Can we think of even better ways of bringing in physics?
- Productivity:
 - "Solow residual" is output contribution from harnessed energy.
 - Can we show that this accounts much better for output growth?
- Inequality:
 - Factor rewards have little connection with "marginal productivity".
 - Instead, rewards to L and K must be determined in other ways.
 - Is it bargaining power?
 - What is the "efficient" distribution of bargaining power?

4 **Conclusion:** No complacency, please!

• The Problems:

- 1. Continued growth of gross energy production may be difficult.
- 2. Decline of EROEI (net-to-gross energy ratio) seems certain.
- 3. Substitutability between energy and K/L may have physical limits.
- 4. Our vaunted "technological progress" may have been energy all along.
- 5. Our cherished "capital" may only matter because it harnesses energy.
- The Implications:
 - These problems are of first-order macroeconomic importance.
 - There is not nearly enough research in this field.
 - Especially research that reaches the mainstream.
 - Especially outside-the-box and interdisciplinary research.
 - Let's get started!