

The benefits of using Regional Input Output tables and the importance of region-specific satellite emissions data

Antonios Katris, Karen Turner (Centre for Energy Policy, University of Strathclyde)

Ian Simpson (University of Stirling)

ESRC-NERC DTC Studentship Ref. 1207166

EPSRC Grant Ref. EP/M00760X/1

The general project

- Current work is part of the EPSRC-funded project titled "Energy saving innovations and economy wide rebound effects"
- Under Work Package 2 we examine the economy-wide impact of changes in consumer behaviour using Input Output models
 - Re-spending of savings due to increased energy efficiency of households
- Already expressed interest by the Energy Saving Trust
 - IO a preferred tool as it is simple and transparent
 - Can also be used to understand the impact of consumer decisions on both downstream and upstream supply chains

The objective of this work

- PhD work on structure of CO₂ emissions tied with EPSRC project
- Focus on showing how Single Region IO from disaggregated Regional IO (national and sub-national) tables can add extra details to analysis conducted using Global Inter-Country IO tables
- Also to highlight the importance of region-specific emissions intensities using calculation of multiplier as illustrative example
 - Therefore the need for region-specific satellite emissions account

Why use Global IO?

- Global Inter-Country IO has been used in PhD work to study the structure and drivers of direct CO₂ and CO₂ footprint of different sectors
- There is policy interest in sectors' direct CO_2 emissions but also in CO_2 footprint
- With Global IO we can study the structure of domestic and international downstream and upstream supply chains
- The more trade partners included the more accurate the results (Lenzen et al, 2004)

Then why the need for Regional IO tables?

- Analysis on Global IO usually points at highly aggregated sectors
 - Potential aggregation bias (Ara, 1959; Miller and Blair, 1981)
 - Over-aggregated sectors can include industries with significantly different characteristics (Hawdon and Pearson, 1995)
 - Not possible to distinguish which component(s) is the main source of emissions
- Regional IO tables usually at national or sub-national level
 - When properly implemented can be highly disaggregated
 - Focus on disaggregating sectors of regional interest
 - More suitable to inform local policy makers
 - However lacking details on imports and exports

What are the gains using Regional IO?

• IO framework used in this study (based on methodology proposed by Turner et al, 2007)

$$Cem_{IRIO} = EL_{IRIO}DY_{IRIO} = \begin{bmatrix} e_{i}^{1}l_{ij}^{11}y_{j}^{1} & \cdots & e_{i}^{1}l_{ij}^{1s}y_{j}^{s} & \cdots & e_{i}^{1}l_{iN}^{1T}y_{N}^{T} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ e_{i}^{r}l_{ij}^{r1}y_{j}^{1} & \cdots & e_{i}^{r}l_{ij}^{rs}y_{j}^{s} & \cdots & e_{i}^{r}l_{iN}^{rT}y_{N}^{T} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ e_{N}^{T}l_{Nj}^{T1}y_{j}^{1} & \cdots & e_{N}^{T}l_{Nj}^{Ts}y_{j}^{s} & \cdots & e_{N}^{T}l_{NN}^{TT}y_{N}^{T} \end{bmatrix}$$

What are the gains using Regional IO?

- Table 1 shows top 10 UK sectors with most direct CO₂ emissions, 2009
 - Sum of row elements for r=UK
 - Calculated using OECD "Inter-Country Input Output database" (Global IO)

				%share of	CO2 Intensity		
			Total Direct	Total UK	(Mt of		
	OECD Sector		Emissions	Direct	CO2/\$m of	Total Final	Total Output
Rank	Code	Sector	(Mt of CO2)	Emissions	output)	Demand (\$m)	(\$m)
1	C40T41	Electricity, Gas and Water Supply	342.40	37.47%	0.00299	57,877.36	114,527.34
2	С60Т63	Transport and Storage	141.71	15.51%	0.00079	57,679.74	178,982.35
3	C50T52	Wholesale and Retail; Repairs	50.81	5.56%	0.00012	246,461.62	411,641.78
4	C23	Coke, Refined Petroleum and Nuclear Fuel	35.92	3.93%	0.00113	7,198.71	31,812.09
5	C24	Chemicals and Chemical Products	31.62	3.46%	0.00045	27,832.84	70,494.93
6	C85	Health and Social Work	22.79	2.49%	0.00007	278,692.36	345,408.46
7	C74	Other Business Activities	21.11	2.31%	0.00004	69,853.79	487,861.48
8	C27	Basic Metals	17.71	1.94%	0.00028	14,937.90	63,299.86
9	C55	Hotels and Restaurants	15.72	1.72%	0.00012	123,294.18	130,026.50
10	С90Т93	Other Community, Social and Personal Services	15.60	1.71%	0.00009	118,498.87	173,974.91
		All Others	218.52	23.91%			
		Total UK Direct Emissions	913.92	100.00%			

What are the gains using Regional IO?

- Table 2 shows top 10 Scottish sectors with most direct CO₂ emissions, 2009
 - Calculated using Scottish Input Output tables (Regional IO)
 - Single Region IO framework

Pank	Scottish Sector Number	Sector	Total Direct Emissions (Mt	% share of Total Scottish Direct Emissions	CO2 Intensity (Mt of CO2/\$m of output)	Total Final Demand (Śm)	Total Output
1	16	Electricity	27 27	25 /10%	0 00299	/ 975 29	12 466 09
1	40		57.27	33.49%	0.00233	4,575.35	12,400.09
2	26	Coke, Petroleum & Petrochemicals	9.49	9.04%	0.00113	6,723.15	8,407.34
3	49	Waste, Remediation & Management	6.34	6.04 %	0.00299	1,562.72	2,122.02
4	48	Water and Sewerage	6.19	5.89%	0.00299	1,342.76	2,070.58
5	47	Gas etc	6.18	5.88%	0.00299	1,163.73	2,066.92
6	58	Support Services for Transport	4.60	4.38%	0.00079	1,537.68	5,815.21
7	55	Other Land Transport	4.12	3.92%	0.00079	2,079.21	5,198.28
8	53	Retail - excl vehicles	1.75	1.67%	0.00012	13,952.37	14,184.41
9	52	Wholesale - excl vehicles	1.50	1.43%	0.00012	8,653.86	12,138.72
10	8	Mining Support	1.43	1.36%	0.00017	7,719.12	8,364.61
		All others	26.14	24.89%			
		Total Scottish Direct Emissions	105.01	100.00%			

Table 2: Top 10 Scottish sectors in terms of direct emissions

What are the gains using Regional IO?

- 'Electricity, Gas and Water Supply' the top sector in Table 1
- 'Electricity', 'Waste, Remediation & Management', 'Water and Sewerage', 'Gas etc' within the top 5 sectors in Table 2
 - Also components of the aggregated 'Electricity, Gas and Water Supply'
- Working with Regional IO tables helps get extra information on highly aggregated sectors
 - 'Electricity' identified as the top polluter amongst the components of what would have been the Scottish 'Electricity, Gas and Water Supply' sector

Are the findings accurate?

- In Tables 1 & 2 the same emissions intensities have been used
 - UK averages
- We observe counter-intuitive results
 - 'Support Services for Transport' more polluting than 'Other Land Transport'
- Discrepancy between the calculated results of Scottish 'Electricity' and the emissions reported to SEPA
 - 37.3Mt of CO₂ calculated, 13.4Mt of CO₂ reported

How this influences analysis?

- We explore how it affects the calculation of a multiplier
- Carbon Saving Multiplier (CSM)
 - Total change in emissions

• $CSM = \frac{10tat change in emissions}{Change in direct household emissions}$

- Illustrative example: Indirect rebound from 10% improved energy efficiency in Scottish households
 - 10% reduced demand in sectors 'Electricity' and 'Gas etc'

- Change in household demand \$360.25m, 2.82Mt of CO₂
- Using UK average intensities the total carbon savings within Scotland from 10% improved Scottish household energy efficiency are 4.64Mt of CO₂
- CSM=1.64

- Substituting SEPA reported emissions (see McGregor et al, 2004) for 'Electricity' then the carbon efficiency savings are 3.65Mt of CO₂
- In that case CSM=1.29
- Already a difference in the size of CSM
- When using UK average intensities we estimate additional 0.35Mt of CO₂ saved economy-wide per Mt of CO₂ saved by Scottish Households

- What if we examine re-spending scenarios?
- Example: All the monetary savings (\$360.25m) re-allocated to 'Food & Beverage Services'
- With UK average carbon intensity for Scottish 'Electricity' the CSM is eroded to 1.61
 - An erosion of 1.82%

- With Scotland specific 'Electricity' carbon intensity CSM is eroded to 1.27
 - An erosion of 2.06%
- The different intensities generate different results, different magnitudes of change

Conclusions

- Global and Regional IO both useful, for different focus of analysis
- Regional IO can provide additional details to findings from Global IO analysis
- However using the same emissions intensities can lead to errors
 - Especially in sectors with multitude of production technologies
- Region-specific emissions intensities is the key
- Can be rather costly (time, resources) but there are benefits to be made by the generation of better results (Turner, 2006)

Thank you for your attention

For any enquiries feel free to contact us at:

antonios.katris@strath.ac.uk

Policy briefing: <u>http://cied.ac.uk/documents/3507-cied-policy-briefing-</u>02-6th-aug16-web.pdf

Project website: <u>http://cied.ac.uk/research/impacts/energysavinginnovations</u>

CEP website: <u>https://www.strath.ac.uk/research/internationalpublicpolicyinstitute/c</u> <u>entreforenergypolicy</u>